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概要
超準解析は 1960 年に Robinson によって提案された手法で、数学的構造に超準的 (nonstan-

dard)な元を付加することでより扱いやすい構造を作り出すものである。最も古典的な例として
は、実数体 Rの「よい」拡大体（超実数体） R∗ を構成することで直観的な無限小解析による実
解析を正当化することが挙げられる。超実数体 R∗ の存在が古典的集合論 ZFによっても示せな
いという意味で、超準解析は非構成的である。一方で、Palmgrenによる層理論的アプローチは、
要求される拡大を圏論的なものに変更することで構成的な超準解析を展開することに成功した。
本講演では、Palmgrenの手法の一般化として圏論的論理学におけるドクトリンの理論で超準解
析を取り扱う。

1 導入
1.1 高校物理からの出発
まずは、高校物理でよくある以下の議論を思い出そう。

重力加速度を g とする。球体を自由落下させてから時間 t が経過したものとし、鉛直下向き
の速さ v(t)と移動距離 x(t)を求めよう。微小時間 ∆t > 0について、重力加速度の定義から
v(t+∆t) = v(t) + g∆tを得、また ∆tは十分小さいから、この時間間隔における速度変化は
無視して x(t +∆t) = x(t) + v(t)∆tを得る。任意の非負整数 N について v(N∆t) = Ng∆t

であるから、一般に v(t) = v( t
∆t · ∆t) = v([ t

∆t ] · ∆t) = [ t
∆t ]g∆t = t

∆tg∆t = gt とな
り、よって x(t + ∆t) = x(t) + gt∆t となる。以上より、x(N∆t) =
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ig(∆t)2、また
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2 となる。

以上の論法の危うさはいくつも指摘できる。∆t ̸= 0という仮定と ∆t = 0という仮定を恣意的に
使い分けているように見えるし、[ t

∆t ] =
t
∆t という仮定を置いているようにも見える。上の変形すべ

てを正当化できるような実数 ∆tが存在しないのだ。
一方で、少なくとも結論は積分法によって完全に正当化されるし、その正当化を Riemann和の定

義に立ち返って確認する場合に似た計算が出てくることを思うと、途中の過程も無意味とは言い難
い。そうとなれば、上の議論全体を正当化できるような枠組みが本当に存在しないのかと疑いたくな
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るのが人情である。

1.2 初等拡大と超実数体
そのような正当化を与えるための最も素直な方針の一つは「実数体 Rに∆tのような奇妙なものを

付け加える」というものだろう。実際それはある意味で、そして極めて一般的に可能である。

事実 1.1. 任意の一階の言語 Lと L-構造Mに対し、その可算飽和な初等拡大 M∗ ⊇ Mが存在す
る。 ♢

例 1.2. 言語 Lとして、任意の実数を定数記号、任意の写像 Rn → Rを n項函数記号として、任意
の Rn の部分集合を n項関係記号として入れたものを考える。L-構造 Rの可算飽和初等拡大 R∗ （非
論理記号の解釈は •∗ と書く）のことを超実数体といい、以下の性質が知られている。

• 無限大自然数が存在する：ある元 N ∈ N∗ があって、任意の実数 r について r <∗ N となる。
•（正の）無限小元が存在する：ある元 ε ∈ R∗ があって、任意の正の実数 rについて 0 <∗ ε <∗ r

が成立する。
• 超有限和について閉じる：任意の写像 F : N → Rと任意のN ∈ N∗ について

N∑
n=0

F∗ (n) ∈ R∗

が定義できる。
• Riemann積分は超有限和である：任意の Riemann可積分函数 f : R → Rと実数 a ∈ R、無
限大自然数 N に対し、 (

a∫
0

f(x)dx)∗ と
N∑

n=0
f∗ ( n

N a)の差は無限小になる。 ■

最初に例示した議論は、t を正の実数、v, x : R → R を連続写像とし、∆t を正の無限小、等号を
無限小の差を無視して考えることで正当化できる。そして、差が無限小の二つの実数は等しいから、
x(t) = 1

2gt
2 が厳密に成立する。

以上のように、調べたい数学的構造Mについて代わりによい初等拡大 M∗ をとって調べる手法の
ことを、実解析に対するアプローチとして初めてそれを提案した Robinsonに由来して超準解析とい
う。現代では、超準解析は位相空間論や組合せ論など様々な分野に応用されている。
このように超準解析は強力な手法であるが、集合論的にはある種の選択公理を導くという問題が

ある。

命題 1.3 (ZF). 超実数体 R∗ の存在は N上の非単項超フィルターの存在を導く。特に、超実数体の
存在は（ZFが無矛盾ならば）ZFから証明されない。

Proof. 無限大自然数 N ∈ R∗ を固定し、F := {A ⊆ N | N ∈ A∗ }とする。実は F は N上の非単項
超フィルターである。

つまり、超準解析は ZF、あるいはより弱い設定における実解析の研究には用いることができない
ということになる。



1.3 Palmgrenの構成的超準解析
一方、古典的なモデル理論に依拠せずそれと異なる「モデル」の概念として圏論的なものを採用す

るならば、超準解析に類する手法を構成的に行うことができる。

事実 1.4 (Palmgren). U をGrothendieck宇宙とし、U に相対化された集合の圏を単に Setと書く。
ある Heyting圏 Set∗ と Heyting埋め込み •∗ : Set ↪→ Set∗ 、及び Setの積についてよく振る舞う
部分対象の族 {StA ⊆ A∗ }A∈Set が存在し、以下の条件を満たす。

• 任意の集合 A,B ∈ Setと部分集合 ϕ ⊆ A×B について、

Set |= (∀a ∈ A.∃b ∈ B.ϕ(a, b)) ⇐⇒ Set∗ |= (∀sta ∈ A∗ .∃stb ∈ B∗ . ϕ∗ (a, b))

• 任意の集合 I, A,B ∈ Setと部分集合 ϕ ⊆ I ×A×B に対し、もしも部分集合族

{S ⊆ A×B | ∃i ∈ I.∀a ∈ A.∀b ∈ B.(i, a, b) ∈ ϕ→ (a, b) ∈ S}

が A×B 上のフィルターならば、

Set∗ |= (∀a ∈ A∗ )[(∀sti ∈ I∗ .∃b ∈ B. ϕ∗ (i, a, b))→ (∃b ∈ B.∀sti ∈ I∗ . ϕ∗ (i, a, b))]

但し、集合 A,B ∈ Setと部分対象 ϕ ∈ A∗ × B∗ に対し、(∀sta ∈ A∗ .ϕ(a, b)), (∃sta ∈ A∗ .ϕ(a, b))

はそれぞれ (∀a ∈ A∗ .StA(a)→ ϕ(a, b)), (∃a ∈ A∗ .StA(a) ∧ ϕ(a, b))の略記（St による相対化）と
する。 ♢

ここで、「Heyting圏」とは大まかに言って構成的一階論理に対応する圏論的構造、「Heyting埋め
込み」とは Heyting圏の間の一種の初等拡大である。また、上の条件のうち二つ目は可算飽和性の類
似物と捉えることができる。そのため、事実 1.4はある意味で「Grothendieck 宇宙 U は “圏論的・
構成的な可算飽和初等拡大”を持つ」という主張として解釈することができる。
事実 1.4において重要であることは、 Set∗ の構成が完全に構成的であるという事実である。実際、
これのオリジナルの主張と証明は Martin-Löf 型理論のもとで記述されている。このことは、事実
1.4の証明が一切の非単項超フィルターはおろか排中律や冪集合公理にすら依存しないことを意味す
る。そして、例えば R∗ ∈ Set∗ を「超実数体」として、部分対象 StR ⊆ R∗ を包含 R ⊆ R∗ の類似
物として扱うことにより、Martin-Löf型理論内部で超準解析を行うことが可能となる。

2 主定理
以上の文脈のもと、講演者は Palmgrenの構成の一般化として以下の主張を示した。なお、以下に
現れる一階カルテシアン・ドクトリン (first-order cartesian doctrine ; FCD)は論理学的には構成的
一階理論の対応物、圏論的には Heyting圏の一般化になっている。

定理 2.1 (M.). 適切な付加構造*1をもつ一階カルテシアン・ドクトリン (FCD) P : C op → HAに

*1 各対象 A ∈ C に対し「Aの有限部分集合の族」にあたる対象 ΦA ∈ C と「所属関係」@A ∈ P (A×ΦA)を割り当て
る対応



対し、ある FCD P∗ : C op → HAと FCDとしての埋め込み •∗ : P ↪→ P∗ 、及び C の積について
よく振る舞う族 {StA ∈ P∗ (A)}A∈C が存在し、以下の条件を満たす。

• 任意の対象 A,B ∈ C と ϕ ∈ P (A×B)について、

P |= (∀a : A.∃b : B.ϕ(a, b)) ⇐⇒ P∗ |= (∀sta : A.∃stb : B. ϕ∗ (a, b))

• 任意の対象 I, A,B ∈ C と ϕ ∈ P (I×A×B)に対し、もしも ϕが A×B 上のフィルター基な
らば、つまり P が (∃i : I.⊤)と (∀i, j : I.∃k : I.∀a : A.∀b : B.ϕ(k, a, b)→ϕ(i, a, b)∧ϕ(j, a, b))
を満たすならば、

P∗ |= (∀a : A)[(∀sti : I.∃b : B. ϕ∗ (i, a, b))→ (∃b : B.∀sti : I. ϕ∗ (i, a, b))]

なお、∀st, ∃st は St による相対化。 ♢

Palmgrenの構成は宇宙 U（あるいはそれに対応する集合の圏 Set）という極めて構造の豊かな*2

対象に限定されていたのに対し、講演者の結果はより弱い構造の上でも超準解析を考えることができ
る点に特色がある。
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*2 自然数型、Σ-型、Π-型等Martin-Löf型理論の基本的な型構成を模倣できる必要がある。標語的に言えば、それ自体を
「数学の基礎」と見做せるほどに豊かな土壌が要求されている。


